
June 10, 2008 Copyright © 2008 S.C. Kothari All rights reserved 1

Scalable Program Comprehension for Scalable Program Comprehension for
Analyzing Complex DefectsAnalyzing Complex Defects

ICPC 08 PresentationICPC 08 Presentation

S. C. KothariS. C. Kothari
Iowa State University & EnSoft Corp.Iowa State University & EnSoft Corp.

Email: Email: kothari@iastate.edukothari@iastate.edu

19081908 20022002

Working Working

TogetherTogether

mailto:kothari@iastate.edu

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 22

Operating System/360 Operating System/360
The notThe not--unexpected passing away of OS/360 in its unexpected passing away of OS/360 in its
21st release 21st release –– August 2, 1972.August 2, 1972.
Obituary:Obituary:

The offspring first saw the light of day in December 1965 The offspring first saw the light of day in December 1965
and the birth announcement recorded a weight of 64K. It and the birth announcement recorded a weight of 64K. It
rapidly became apparent that OS, in spite of its unusual rapidly became apparent that OS, in spite of its unusual
size, was more than normally subject to childhood diseases. size, was more than normally subject to childhood diseases.
For a long period, this weak and sickly baby hovered close For a long period, this weak and sickly baby hovered close
to death despite almost continuous transformations and to death despite almost continuous transformations and
major transplants of several vital organs. Many experts are major transplants of several vital organs. Many experts are
of the opinion that the huge weight of OS at birth of the opinion that the huge weight of OS at birth
contributed greatly to its early ill health. OS is survived by contributed greatly to its early ill health. OS is survived by
two lineal descendants, OS/VS1 and OS/VS2. It will be two lineal descendants, OS/VS1 and OS/VS2. It will be
mourned by its many friends and particularly by the over mourned by its many friends and particularly by the over
10,000 system programmers throughout the world who owe 10,000 system programmers throughout the world who owe
their jobs to its existence. their jobs to its existence.

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 33

Millions of Lines of Code in Windows

0

10

20

30

40

50

60

3.1 3.5 3.51 4.0 2000 XP Vista

Windows Operating SystemWindows Operating System

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 44

A Classroom ExperienceA Classroom Experience

In an operating system course
project, a student spends:
• 40 hours in identifying and

understanding the relevant parts of
code.

• 2 hours in making the actual code
changes to incorporate the specified
functionality.

• 10 hours in testing and debugging the
code.

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 55

Software Reliability Software Reliability –– Huge ProblemHuge Problem

Infamous Ariane 5 disaster, caused by
a bug in the rocket’s control software.

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 66

Problem Solving with PC ToolsProblem Solving with PC Tools

Problem: A clear definition including Problem: A clear definition including
the variations.the variations.
Solution:Solution:
•• Estimating the work and the costEstimating the work and the cost
•• Ease of applicabilityEase of applicability
•• Scalability to large softwareScalability to large software
•• Differentiating factorsDifferentiating factors

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 77

Matching Pair (MP) Defects Matching Pair (MP) Defects

Defect Defect -- if certain if certain program artifactsprogram artifacts
are not in matching pairs.are not in matching pairs.
A wide array of MP defects: nonA wide array of MP defects: non--
matching parentheses, memory matching parentheses, memory
leaks, synchronization problems etc.leaks, synchronization problems etc.
Different levels of comprehension Different levels of comprehension
complexity.complexity.

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 88

Levels of ComplexityLevels of Complexity

Four Levels:Four Levels:
•• Level I involves knowledge of syntaxLevel I involves knowledge of syntax
•• Level II involves knowledge of control Level II involves knowledge of control

flowflow
•• Level III involves knowledge of control Level III involves knowledge of control

flow and data flowflow and data flow
•• Level IV involves knowledge of control Level IV involves knowledge of control

flow, data flow, and control transfer.flow, data flow, and control transfer.

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 99

MPMP--1 Defects 1 Defects

Syntactic program artifacts such as Syntactic program artifacts such as
parentheses. parentheses.
Matching Constraint:Matching Constraint:
•• LocalLocal: matching must be within a program : matching must be within a program

statement or a block. statement or a block.
•• LIFOLIFO: Different types of artifacts must : Different types of artifacts must

individually match according to the individually match according to the LIFOLIFO
property.property.

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 1010

MPMP--2 Defects2 Defects

Matching involves control flow. Matching involves control flow.
Matching must happen on all Matching must happen on all feasible feasible
execution pathsexecution paths..
Example: matching pairs of functions Example: matching pairs of functions
to to disabledisable and and enableenable interrupts. interrupts.

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 1111

Feasible vs. nonFeasible vs. non--feasible pathsfeasible paths
Read (X);

A = B = C =5;

If (X > 5)

enable();

If (X == 0)

A = B + C;

If (X > 5)

disable();

Print (A,B,C);

Note that enable() and
disable() match on all
feasible control paths. There
are infeasible control paths
on which they do not match.

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 1212

MPMP--3 Defects3 Defects

Matching Constraint: Matching Constraint:
•• Involves Involves control flowcontrol flow and and data flowdata flow. .
•• Matching must happen on all Matching must happen on all feasible feasible

execution pathsexecution paths..
•• Matching involves data elements.Matching involves data elements.

Example: memory leaksExample: memory leaks
•• Allocation not matched by deallocation.Allocation not matched by deallocation.
•• Matching requires allocation and deallocation Matching requires allocation and deallocation

to have pointers to the same memory location.to have pointers to the same memory location.

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 1313

MPMP--4 Defects4 Defects

Similar to MPSimilar to MP--3, but complicated by 3, but complicated by
concurrent and interrupt processing.concurrent and interrupt processing.
Implication Implication -- the feasible execution paths the feasible execution paths
may not be directly linked by control flow.may not be directly linked by control flow.
Example: memory leaksExample: memory leaks
•• Allocation may be matched by deallocation Allocation may be matched by deallocation

across a different thread or deallocation done by across a different thread or deallocation done by
an interrupt service routine.an interrupt service routine.

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 1414

Shared pool of tokens

D1

T2

f -1

A
different
execution
thread

E1

S2

E3

E2

f

f -1

Matching Pairs

Watch a scenario
that makes the
second path not
defective.

Watch a second path –
appears to be defective.

Watch one non-defective path.

Matching Pairs

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 1515

Knowledge-Centric Software
(KCS) tools technology

… Work at EnSoft and ISU

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 1616

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 1717

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 1818

Tools to amplify human intelligenceTools to amplify human intelligence

Fredrick Brooks:Fredrick Brooks:
“... IA > AI, that is, that intelligence
amplifying systems can, at any given
level of available systems
technology, beat AI systems. That is,
a machine and a mind can beat a
mind-imitating machine working by
itself.”

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 1919

QueryQuery--ModelModel--Refine (QMR) Refine (QMR)
TechniqueTechnique

A natural way to amplify human
intelligence by assisting in:
•Retrieval of information by
analyzing software.

•Generation of visual models from
the retrieved information.

•Refinement of the models to
manage complexity.

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 2020

A DemonstrationA Demonstration

Defect analysis using the QMR Defect analysis using the QMR
technique to program technique to program
comprehension.comprehension.
We will show how to analyze the We will show how to analyze the
Linux operating systems for MP Linux operating systems for MP
defects.defects.

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 2121

A Defect Analysis Problem A Defect Analysis Problem

Problem: analyze the Linux 2.6 Problem: analyze the Linux 2.6
kernel for MP defects w.r.t. kernel for MP defects w.r.t.
mutex_lockmutex_lock and and mutex_unlockmutex_unlock
functions.functions.

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 2222

IA ApproachIA Approach

•• Define a comprehension strategy to Define a comprehension strategy to
solve the problem. solve the problem.

•• Use the tool to execute the strategy.Use the tool to execute the strategy.
•• Implication: To design useful tools, prior Implication: To design useful tools, prior

understanding of problems and solution understanding of problems and solution
strategies is important. strategies is important.

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 2323

A Defect Analysis SolutionA Defect Analysis Solution

Design a sequence of solution steps.Design a sequence of solution steps.
Define the query, model, or the Define the query, model, or the
refinement to be done at each step.refinement to be done at each step.
Quantify the work in an early stage Quantify the work in an early stage
of the solution process.of the solution process.
Argue that all the possible cases are Argue that all the possible cases are
handled.handled.

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 2424

Step 1Step 1
Divide the problem in two cases:Divide the problem in two cases:
•• Case 1: the Case 1: the locklock and and unlockunlock are called are called

within the same function.within the same function.
•• Case 2: the Case 2: the locklock and and unlockunlock are not are not

called within the same function.called within the same function.

We will follow up case 2.We will follow up case 2.
Execute queries to obtain a list of Execute queries to obtain a list of
functions that call functions that call locklock but but notnot
unlockunlock..

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 2525

Result 1Result 1

LOCK
UNLOCK

401 functions that call lock

436 functions that call unlock

51 functions call unlock but not lock

16 functions call lock but not unlock

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 2626

A function calls lock but not unlockA function calls lock but not unlock

static void *diskstats_start(struct seq_file *part, loff_t *pos)
{
loff_t k = *pos;
struct list_head *p;

mutex_lock(&block_subsys_lock);
list_for_each(p, &block_subsys.kset.list)

if (!k--)
return list_entry(p, struct gendisk, kobj.entry);

return NULL;
}

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 2727

Checking a PossibilityChecking a Possibility
Analyze these 16 functions that call Analyze these 16 functions that call
lock but not unlock.lock but not unlock.
For such a function For such a function gg check the check the
possibility: an ancestor possibility: an ancestor ff of of gg calls calls
unlock (directly or indirectly).unlock (directly or indirectly).

ff
hh

gg LOCK

UNLOCK

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 2828

What should be the query to find What should be the query to find
the ancestor?the ancestor?

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 2929

f1f1
hh

gg LOCK

UNLOCK

f2f2

f3f3
hh UNLOCK

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 3030

Step 2Step 2

Execute a query to find the Execute a query to find the rootsroots of of
reverse call graphreverse call graph with the given 16 with the given 16
functions as leaves. functions as leaves.

16 functions that call
lock but not unlock

Separate
threads or
interrupt
service
routines

183 roots

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 3131

f1f1
hh

gg LOCK

UNLOCK

f2f2

f3f3
hh UNLOCK

UNLOCK

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 3232

Step 3Step 3
Partition the roots into groups of Partition the roots into groups of
related functions.related functions.

16 functions that call
lock but not unlock

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 3333

Step 4Step 4
Model: Call tree with a selected group of Model: Call tree with a selected group of
roots and lock and unlock as leaves.roots and lock and unlock as leaves.
For demonstration, we will select:For demonstration, we will select:
•• idecd_ioctlidecd_ioctl

•• idedisk_ioctlidedisk_ioctl

Note that the ancestorNote that the ancestor f f where the lock where the lock
and unlock can be matched, if it exists, and unlock can be matched, if it exists,
can be found through the above model. can be found through the above model.

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 3434

Result Result
Represents
two cases
which can be
analyzed
separately

87 nodes

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 3535

Step 5Step 5
Refine the Model: Omit one case at a Refine the Model: Omit one case at a
time. time.
This refinement is achieved by a This refinement is achieved by a
graph transformation provided by graph transformation provided by
Atlas.Atlas.

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 3636

ResultResult
This is not an
ancestor of
the function gg

62 nodes

Lock

The function g g
that calls
LOCK but not
unlock.

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 3737

Step 6Step 6
Further Refinement: Omit the part Further Refinement: Omit the part
which is not an ancestor of which is not an ancestor of g. .
This refinement is achieved by a This refinement is achieved by a
graph transformation provided by graph transformation provided by
Atlas.Atlas.

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 3838

ResultResult

The ancestor
where the lock and
unlock call can be
matched.

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 3939

Questions ??Questions ??

Would like to discuss:Would like to discuss:
•• Program comprehension toolsProgram comprehension tools
•• Program comprehension problems and Program comprehension problems and

solution strategiessolution strategies
•• Query languagesQuery languages
•• Use of graph theory in program Use of graph theory in program

comprehensioncomprehension

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 4040

Atlas Atlas –– A Program Mapping ToolA Program Mapping Tool

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 4141

Total Insight Total Insight –– A COBOL ToolA COBOL Tool

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 4242

SimDiff SimDiff –– A Model Differencing ToolA Model Differencing Tool

June 10, 2008June 10, 2008 Copyright Copyright ©© 2008 S.C. Kothari All rights reserved2008 S.C. Kothari All rights reserved 4343

ReferencesReferences
Fredrick Brooks, Fredrick Brooks, TheThe Computer Scientist as Computer Scientist as
ToolsmithToolsmith,,
•• http://www.cs.unc.edu/~brooks/Toolsmithhttp://www.cs.unc.edu/~brooks/Toolsmith--CACM.pdfCACM.pdf

Earliest paper on software complexity: Earliest paper on software complexity:
•• Rubey, R.J.; Hartwick, R.D.: Quantitative Measurement Rubey, R.J.; Hartwick, R.D.: Quantitative Measurement

Program Quality. ACM, National Computer Conference pp. Program Quality. ACM, National Computer Conference pp.
671671--677, 1968.677, 1968.

KnowledgeKnowledge--Centric Software Research Laboratory at Centric Software Research Laboratory at
ISUISU
•• http://dirac.ece.iastate.edu/sec/http://dirac.ece.iastate.edu/sec/

EnSoft Corp. EnSoft Corp.
•• http://www.ensoftcorp.com/http://www.ensoftcorp.com/

http://www.cs.unc.edu/~brooks/Toolsmith-CACM.pdf
http://dirac.ece.iastate.edu/sec/
http://www.ensoftcorp.com/

	Scalable Program Comprehension for Analyzing Complex Defects��ICPC 08 Presentation
	Operating System/360
	Windows Operating System
	A Classroom Experience
	Software Reliability – Huge Problem
	Problem Solving with PC Tools
	Matching Pair (MP) Defects
	Levels of Complexity
	MP-1 Defects
	MP-2 Defects
	Feasible vs. non-feasible paths
	MP-3 Defects
	MP-4 Defects
	Tools to amplify human intelligence
	Query-Model-Refine (QMR) Technique
	A Demonstration
	A Defect Analysis Problem
	IA Approach
	A Defect Analysis Solution
	Step 1
	Result 1
	A function calls lock but not unlock
	Checking a Possibility
	What should be the query to find the ancestor?
	 Step 2
	 Step 3
	 Step 4
	Result
	 Step 5
	Result
	 Step 6
	Result
	Questions ??
	Atlas – A Program Mapping Tool
	Total Insight – A COBOL Tool
	SimDiff – A Model Differencing Tool
	References

